

CRUISE RESULTS

NOAA Ship **Gordon Gunter** Cruise **GU-05-03**
14 June - 16 August, 2005

A survey of the U.S. mid-Atlantic to collect biopsy samples for analysis of population structure in bottlenose dolphins and pilot whales.

U.S. Department of Commerce
National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Mississippi Laboratories
P.O. Drawer 1207
Pascagoula, Mississippi 39568-1207

INTRODUCTION

NOAA Ship *Gordon Gunter* departed Pascagoula, Mississippi on 14 June 2005 to conduct a marine mammal survey in the U.S. Atlantic Ocean between Florida and New Jersey. Survey operations occurred over the continental shelf south of North Carolina, and in inner slope waters near the continental shelf break north of Cape Hatteras. The survey was focused on sampling efforts supporting the evaluation of population structure for marine mammal stocks, specifically bottlenose dolphins and pilot whales, in U.S. Atlantic waters.

The U.S. Marine Mammal Protection Act (MMPA) requires that stocks of marine mammal species in U.S. waters be maintained at or above their optimum sustainable population defined as the number of animals which results in the maximum net productivity. NOAA Fisheries is required to prepare an annual Stock Assessment Report for each stock to update abundance, population structure, maximum net productivity, human-caused mortality, and status (e.g., Waring *et al.*, 2004).

A critical component of marine mammal assessment is the accurate definition of management units or population stocks. A “stock” is a group of marine mammals that occupies a common spatial arrangement and interbreeds when mature. Incorrect classification of stocks, particularly combining two smaller populations into one larger management unit, can lead to inefficient management and depletion of marine mammal stocks. In the U.S. Atlantic, there are two species where questions of stock structure are particularly critical due to interactions with commercial fisheries.

Bottlenose dolphins, *Tursiops truncatus*, have two distinct morphotypes that are separate populations and overlap spatially over the continental shelf in the South Atlantic Bight. The “coastal” and “offshore” forms cannot be reliably distinguished at sea or during aerial surveys used to estimate abundance. In addition, the latitudinal distribution of stocks of the coastal morphotype has been the subject of ongoing study by NMFS during the last five years. Additional collection of biopsy samples and genetic analyses is required to address both of these population structure questions for bottlenose dolphins.

There are two species of pilot whales occupying Atlantic waters between Florida and New Jersey. These are the shortfin pilot whale, *Globicephala macrorhynchus*, and the longfin pilot whale, *Globicephala melas*. The spatial range of these species overlaps in mid-Atlantic waters, and they cannot be reliably distinguished at sea. Pilot whales are frequently taken in the U.S. Atlantic pelagic longline fishery. The two species are currently managed as a single stock since it is not possible to distinguish between them in either abundance or mortality estimates. It is critical to improve our understanding of the relative spatial distribution of these species so as to accurately assess stock status and mitigate fishery interactions.

The summer 2005 *Gordon Gunter* survey was designed to collect biopsy tissue samples and other data to address the critical issues of population structure in bottlenose dolphins and pilot whales.

CRUISE OBJECTIVES

1. Locate and collect tissue samples (biopsies) of pilot whales and bottlenose dolphins, and other selected cetacean species using a variety of devices including rifles and crossbows in the U.S. Atlantic Ocean.
2. Conduct photographic studies and acoustic recordings of pilot whales to explore methods to distinguish the two species in field data.
3. Capture and satellite tag bottlenose dolphins in continental shelf waters south of North Carolina.

METHODS

Visual Survey

Visual surveys were conducted by three observers stationed on the flying bridge. Standard ship-based, line-transect survey methods for cetaceans, similar to those used in the Pacific Ocean, Atlantic Ocean and Gulf of Mexico were used (e.g., Barlow 1995, Mullin and Fulling 2003, Fulling *et al.* 2003). Two observers were stationed at the port and starboard 25x "bigeye" binoculars and the third observer observed the track line with naked eye and small binoculars, and entered data into a laptop computer.

For each cetacean sighting, time, position, bearing and reticle (a measure of radial distance) of the sighting, species, group-size, behavior, bottom depth, sea surface temperature, and associated animals (e.g., seabirds, fish) were recorded. The bearing and radial distance for groups sighted without 25x binoculars and close to the ship were estimated. Survey effort data were automatically recorded every 2 min and included the ship's position and heading, effort status, observer positions, and environmental conditions which could effect the observers' ability to sight animals (e.g., Beaufort sea state, trackline glare, etc.). Typically, if a sighting was within a 3.0 nm strip on either side of the ship, the ship was diverted from the trackline to approach the group to identify species and estimate group-size. Cetaceans were identified to the lowest taxonomic level possible.

Survey speed was usually 18 km hr^{-1} (~10 knots) but varied with sea conditions. The effectiveness of visual line transect survey effort is severely limited during high sea state and poor visibility conditions (e.g., fog, haze, rain). Survey effort was therefore suspended during heavy seas (sea state > 6) and rain.

The primary goal of the visual survey effort was to find and identify target species for biopsy sample collection either from the bow of the *Gordon Gunter* or by deploying the small boat. The visual team also assisted the small boat in acquiring and maintaining contact with target groups of cetaceans.

Small Boat Operations

The primary platform for collection of biopsy samples was the small boat carried aboard the *Gunter*. The “R3” was deployed by crane from the deck, and the scientific party included a boat driver, biopsy sampler, photographer, and data recorder. Generally, the small boat was deployed when an appropriate group of pilot whales or bottlenose dolphins was observed by the flying bridge team. The small boat stayed with a pilot whale group to collect biopsy samples from multiple subgroups of a larger aggregation and conduct extensive photo-documentation. Small boat deployment and operations were conducted in accordance with the current small boat guidelines implemented by NOAA fisheries and the NOAA corps.

Biopsy Sampling

Biopsy tissue samples were collected either from the bow of the *Gordon Gunter* or the R3. Skin samples from collected biopsies are genetically analyzed for gender determination, evaluation of population structure, and species identification. Samples were collected using a modified .22 caliber dart rifle fitted with custom designed biopsy heads that extract a small plug of tissue from the animals. Data on each sampling attempt were recorded and included GPS location, time, date, sampler and recorder name, species, body location struck, behavioral reaction, and whether or not a sample was obtained. A complete log of the biopsy data is maintained at the Pascagoula and Miami laboratories. Both photographic and video records of biopsy attempts were taken during these operations. Biopsy sampling was attempted after all pertinent group size and biological information was recorded by the observer team. Biopsy samples were stored in DMSO and frozen at -20°C to preserve genetic material for later analysis.

Photo-identification

Extensive photo-documentation activities were undertaken for pilot whales. The goal of this work was to take photographs of physical characteristics such as coloration, head shape, dorsal fin shape, and the appearance of the cape that may allow visual distinction of the two species of pilot whales at sea. Identification photographs were taken for every pilot whale from which a biopsy sample was taken along with associated members of each sub-group. The photographic data will be correlated with the results from genetic analyses of biopsy samples. In addition, identifying features from dorsal fin photographs may be useful in identifying individual animals in future surveys of this area.

Satellite Tagging Attempts

The third leg of the survey was dedicated to efforts to capture bottlenose dolphins on the continental shelf, collect biological samples, and place satellite tags that could track animal movements for several months. The goal of tag deployment is to improve understanding of the seasonal latitudinal movements of bottlenose dolphins south of North Carolina. Capture attempts were made from the small boat employing a “hoop net” which is placed over the head of a bowriding dolphin. The animal is then brought near the boat and placed on a floating pad. Sampling would include skin and blubber,

dolphins. Bottlenose dolphins were observed across the bathymetry gradient offshore of Florida, but were more aggregated into nearshore and offshore concentrations further north (Figure 2). Atlantic spotted dolphins were most abundant in intermediate depth waters over the continental shelf in this region (Figure 2).

The second leg focused its effort in the mid-Atlantic bight along the shelf break targeting pilot whales. Very high densities of pilot whales and other species were encountered in the region just north of Cape Hatteras, North Carolina (Figure 3). Sperm whales were also abundant in this area and regions both further north and offshore. In the northern part of the survey range, aggregations of fin whales were encountered along with lower densities of pilot whales (Figure 3). Common dolphins, Risso's dolphins, and bottlenose dolphins also occurred in high densities near Cape Hatteras, and striped dolphins were abundant in the northern portion of the range (Figure 4).

During leg three, the primary goal of the survey was to observe and tag bottlenose dolphins in nearshore and offshore aggregations. The survey trackline this ran parallel to bathymetry in areas of expected high concentrations. There were 27 sightings of bottlenose dolphins and 31 sightings of Atlantic spotted dolphins during leg 3 (Figure 5). Attempts to capture dolphins using the small boat and hoop nets were made on three different survey days. While we were successful in deploying the small boat, following dolphins, and making capture attempts, generally poor weather conditions precluded successful captures of any animals.

Biopsy Sampling

Biopsy samples were collected throughout the survey range, providing critical samples for assessment of population structure in pilot whales and bottlenose dolphins. A total of 160 samples were collected during the survey including 69 samples from bottlenose dolphins and 62 from pilot whales (Table 3). Pilot whale samples were collected primarily from the Cape Hatteras region, while bottlenose dolphin samples were collected from nearshore and offshore aggregations between Georgia and South Carolina (Figure 6). These samples are currently undergoing analysis at the southeast marine mammal population genetics laboratory.

Photo-identification

A total of 2,603 photographs were collected from groups of cetaceans during the surveys. The majority of these images (1,449) were collected from pilot whales associated with the collection of biopsy samples. An additional 354 images were taken of sperm whales. The pilot whale images have been catalogued into a database for use in photo-identification analysis.

Environmental Data

All data from the CTDs, XBTs and the SCS are maintained at the Pascagoula Laboratory for analysis, editing, and archiving. The CTD and SCS data are available upon request from Chuck.Schroeder@noaa.gov.

LITERATURE CITED

Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fishery Bulletin 93:1-14.

Fulling, G.L., K.D. Mullin, and C.W. Hubbard. 2003. Abundance and distribution of cetaceans in outer continental shelf waters of the U.S. Gulf of Mexico. Fishery Bulletin 101:923-932.

Mullin, K.D. and G.L. Fulling. 2003. Abundance of cetaceans in the southern U.S. North Atlantic Ocean during summer 1998. Fishery Bulletin 101:603-613.

Waring, G.T., R.M. Pace, J.M. Quintal, C.P. Fairfield, and K.M. Foley (eds.). 2004. U.S. Atlantic and Gulf of Mexico marine mammal stock assessments-2003. NOAA Tech. Mem. NMFS-NE-182. 287 p.

Tony Martinez	NOAA Proj. C380	St.	NOAA, Miami, FL	US
Melody Brown	Observer	St.	NOAA, Pascagoula, MS	US
Kevin Berry	Observer	St.	NOAA, Pascagoula, MS	US
Leigh Bowden	Observer	St.	NOAA, Pascagoula, MS	US
Stephen Classroom	Observer	St.	NOAA, Pascagoula, MS	US
Carol Fahey	Observer	St.	NOAA, Miami, FL	US
Laura Lang	Observer	St.	NOAA, Pascagoula, MS	US
Grace Rodriguez	Observer	St.	NOAA, Pascagoula, MS	US
Neida Rivas	Observer	St.	NOAA, Pascagoula, MS	US
Anna Salter	Observer	St.	NOAA, Pascagoula, MS	US
Joey Walker	Observer	St.	NOAA, Miami, FL	US

Editorial Staff

Tony Martinez	Lead Party Chair	St.	NOAA, Miami, FL	US
Melody Brown	Editor	St.	NOAA, Pascagoula, MS	US
Jeff Pace	Editor	St.	NOAA, Pascagoula, MS	US
Alisa Hulme	Editor	St.	NOAA, Pascagoula, MS	US
Stephen Classroom	Editor	St.	NOAA, Pascagoula, MS	US
Laura Lang	Editor	St.	NOAA, Pascagoula, MS	US
Anna Salter	Editor	St.	NOAA, Pascagoula, MS	US
Grace Rodriguez	Editor	St.	NOAA, Pascagoula, MS	US
Neida Rivas	Editor	St.	NOAA, Pascagoula, MS	US
Joey Walker	Editor	St.	NOAA, Miami, FL	US

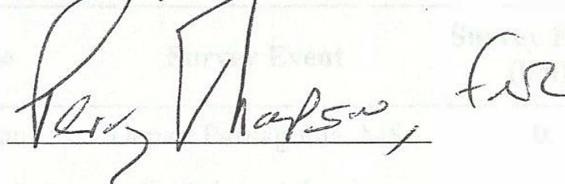
GU-05-03 Cruise Participants

<u>Name</u>	<u>Title</u>	<u>Sex</u>	<u>Organization</u>	<u>Citizenship</u>
-------------	--------------	------------	---------------------	--------------------

Leg 1 (14 June - 4 July)

Tony Martinez	Field Party Chief	M	NMFS, Miami, FL	US
Melody Baran	Observer	F	JCWS, Pascagoula, MS	US
Kevin Barry	Observer/Biopsy	M	JCWS, Pascagoula, MS	US
Carrie Barry	Observer/Photo-id	F	JCWS, Pascagoula, MS	US
Stephen Claussen	Observer/Biopsy	M	NMFS, Pascagoula, MS	US
Jeff Foster	Observer/Biopsy	M	JCWS, Pascagoula, MS	US
Carrie Horton	Observer	F	JCWS, Pascagoula, MS	US
Lanora Lang	Observer	F	JCWS, Pascagoula, MS	US
Grisel Rodriguez	Observer	F	JCWS, Pascagoula, MS	US
Brenda Rone	Observer/Photo-id	F	JCWS, Pascagoula, MS	US
Jesse Wicker	Observer	M	NMFS, Miami, FL	US

Leg 2 (7 July - 25 July)


Tony Martinez	Field Party Chief	M	NMFS, Miami, FL	US
Melody Baran	Observer	F	JCWS, Pascagoula, MS	US
Kevin Barry	Observer/Biopsy	M	JCWS, Pascagoula, MS	US
Leslie Burdett	Observer	F	JCWS, Pascagoula, MS	US
Stephen Claussen	Observer/Biopsy	M	NMFS, Pascagoula, MS	US
Carol Fairfield	Observer	F	NMFS, Miami, FL	US
Lanora Lang	Observer	F	JCWS, Pascagoula, MS	US
Grisel Rodriguez	Observer	F	JCWS, Pascagoula, MS	US
Brenda Rone	Observer/Photo-id	F	JCWS, Pascagoula, MS	US
Anna Sellas	Observer/Biopsy	F	JCWS, Pascagoula, MS	US
Jesse Wicker	Observer	M	NMFS, Miami, FL	US

Leg 3 (27 July - 16 August)

Tony Martinez	Field Party Chief	M	NMFS, Miami, FL	US
Melody Baran	Observer	F	JCWS, Pascagoula, MS	US
Jeff Foster	Observer/Biopsy	M	JCWS, Pascagoula, MS	US
Aleta Hohn	Tagging Spec.	F	JCWS, Pascagoula, MS	US
Stephen Claussen	Observer/Biopsy	M	NMFS, Pascagoula, MS	US
Larry Hansen	Tagging Spec.	M	NMFS, Beaufort, NC	US
Annie Gorgone	Observer/Biopsy	F	NMFS, Beaufort, NC	US
Tom Ninke	Observer/Biopsy	M	NMFS, Beaufort, NC	US
Larry Christian	Observer	M	NC State Univ.	US
Craig Harms	Vettrinarinan	M	NC State Univ.	US
Jesse Wicker	Observer	M	NMFS, Miami, FL	US

Table 1. Summary of daily survey effort during 2002 in the year.

Submitted by:

Anthony Martinez
Field Party Chief

Approved by:

Dr. Scott Nichols, Director
Mississippi Laboratories

Dr. Nancy Thompson, Director
Southeast Fisheries Science Center

Survey Day	Number of sightings	Avg. Size
19-Jun	11	23
20-Jun	13	33
21-Jun	12	39
22-Jun	13	38
23-Jun	14	35
24-Jun	12	42
25-Jun	10	35
26-Jun	11	24
27-Jun	12	23
28-Jun	13	24
29-Jun	10	23
30-Jun	11	23
1-Jul	12	20
2-Jul	13	27
3-Jul	11	20
4-Jul	12	27
5-Jul	13	27
6-Jul	14	27
7-Jul	11	20
8-Jul	12	27
9-Jul	13	27
10-Jul	14	27
11-Jul	15	27
12-Jul	16	27
13-Jul	17	27
14-Jul	18	27
15-Jul	19	27
16-Jul	20	27
17-Jul	21	27
18-Jul	22	27
19-Jul	23	27
20-Jul	24	27
21-Jul	25	27
22-Jul	26	27
23-Jul	27	27
24-Jul	28	27
25-Jul	29	27
26-Jul	30	27
27-Jul	31	27
28-Jul	32	27
29-Jul	33	27
30-Jul	34	27
31-Jul	35	27
1-Aug	36	27
2-Aug	37	27
3-Aug	38	27
4-Aug	39	27
5-Aug	40	27
6-Aug	41	27
7-Aug	42	27
8-Aug	43	27
9-Aug	44	27
10-Aug	45	27
11-Aug	46	27
12-Aug	47	27
13-Aug	48	27
14-Aug	49	27
15-Aug	50	27
16-Aug	51	27
17-Aug	52	27
18-Aug	53	27
19-Aug	54	27
20-Aug	55	27
21-Aug	56	27
22-Aug	57	27
23-Aug	58	27
24-Aug	59	27
25-Aug	60	27
26-Aug	61	27
27-Aug	62	27
28-Aug	63	27
29-Aug	64	27
30-Aug	65	27
31-Aug	66	27
1-Sep	67	27
2-Sep	68	27
3-Sep	69	27
4-Sep	70	27
5-Sep	71	27
6-Sep	72	27
7-Sep	73	27
8-Sep	74	27
9-Sep	75	27
10-Sep	76	27
11-Sep	77	27
12-Sep	78	27
13-Sep	79	27
14-Sep	80	27
15-Sep	81	27
16-Sep	82	27
17-Sep	83	27
18-Sep	84	27
19-Sep	85	27
20-Sep	86	27
21-Sep	87	27
22-Sep	88	27
23-Sep	89	27
24-Sep	90	27
25-Sep	91	27
26-Sep	92	27
27-Sep	93	27
28-Sep	94	27
29-Sep	95	27
30-Sep	96	27
31-Sep	97	27
1-Oct	98	27
2-Oct	99	27
3-Oct	100	27
4-Oct	101	27
5-Oct	102	27
6-Oct	103	27
7-Oct	104	27
8-Oct	105	27
9-Oct	106	27
10-Oct	107	27
11-Oct	108	27
12-Oct	109	27
13-Oct	110	27
14-Oct	111	27
15-Oct	112	27
16-Oct	113	27
17-Oct	114	27
18-Oct	115	27
19-Oct	116	27
20-Oct	117	27
21-Oct	118	27
22-Oct	119	27
23-Oct	120	27
24-Oct	121	27
25-Oct	122	27
26-Oct	123	27
27-Oct	124	27
28-Oct	125	27
29-Oct	126	27
30-Oct	127	27
31-Oct	128	27
1-Nov	129	27
2-Nov	130	27
3-Nov	131	27
4-Nov	132	27
5-Nov	133	27
6-Nov	134	27
7-Nov	135	27
8-Nov	136	27
9-Nov	137	27
10-Nov	138	27
11-Nov	139	27
12-Nov	140	27
13-Nov	141	27
14-Nov	142	27
15-Nov	143	27
16-Nov	144	27
17-Nov	145	27
18-Nov	146	27
19-Nov	147	27
20-Nov	148	27
21-Nov	149	27
22-Nov	150	27
23-Nov	151	27
24-Nov	152	27
25-Nov	153	27
26-Nov	154	27
27-Nov	155	27
28-Nov	156	27
29-Nov	157	27
30-Nov	158	27
31-Nov	159	27
1-Dec	160	27
2-Dec	161	27
3-Dec	162	27
4-Dec	163	27
5-Dec	164	27
6-Dec	165	27
7-Dec	166	27
8-Dec	167	27
9-Dec	168	27
10-Dec	169	27
11-Dec	170	27
12-Dec	171	27
13-Dec	172	27
14-Dec	173	27
15-Dec	174	27
16-Dec	175	27
17-Dec	176	27
18-Dec	177	27
19-Dec	178	27
20-Dec	179	27
21-Dec	180	27
22-Dec	181	27
23-Dec	182	27
24-Dec	183	27
25-Dec	184	27
26-Dec	185	27
27-Dec	186	27
28-Dec	187	27
29-Dec	188	27
30-Dec	189	27
31-Dec	190	27
1-Jan	191	27
2-Jan	192	27
3-Jan	193	27
4-Jan	194	27
5-Jan	195	27
6-Jan	196	27
7-Jan	197	27
8-Jan	198	27
9-Jan	199	27
10-Jan	200	27
11-Jan	201	27
12-Jan	202	27
13-Jan	203	27
14-Jan	204	27
15-Jan	205	27
16-Jan	206	27
17-Jan	207	27
18-Jan	208	27
19-Jan	209	27
20-Jan	210	27
21-Jan	211	27
22-Jan	212	27
23-Jan	213	27
24-Jan	214	27
25-Jan	215	27
26-Jan	216	27
27-Jan	217	27
28-Jan	218	27
29-Jan	219	27
30-Jan	220	27
31-Jan	221	27
1-Feb	222	27
2-Feb	223	27
3-Feb	224	27
4-Feb	225	27
5-Feb	226	27
6-Feb	227	27
7-Feb	228	27
8-Feb	229	27
9-Feb	230	27
10-Feb	231	27
11-Feb	232	27
12-Feb	233	27
13-Feb	234	27
14-Feb	235	27
15-Feb	236	27
16-Feb	237	27
17-Feb	238	27
18-Feb	239	27
19-Feb	240	27
20-Feb	241	27
21-Feb	242	27
22-Feb	243	27
23-Feb	244	27
24-Feb	245	27
25-Feb	246	27
26-Feb	247	27
27-Feb	248	27
28-Feb	249	27
29-Feb	250	27
1-Mar	251	27
2-Mar	252	27
3-Mar	253	27
4-Mar	254	27
5-Mar	255	27
6-Mar	256	27
7-Mar	257	27
8-Mar	258	27
9-Mar	259	27
10-Mar	260	27
11-Mar	261	27
12-Mar	262	27
13-Mar	263	27
14-Mar	264	27
15-Mar	265	27
16-Mar	266	27
17-Mar	267	27
18-Mar	268	27
19-Mar	269	27
20-Mar	270	27
21-Mar	271	27
22-Mar	272	27
23-Mar	273	27
24-Mar	274	27
25-Mar	275	27
26-Mar	276	27
27-Mar	277	27
28-Mar	278	27
29-Mar	279	27
30-Mar	280	27
31-Mar	281	27
1-Apr	282	27
2-Apr	283	27
3-Apr	284	27
4-Apr	285	27
5-Apr	286	27
6-Apr	287	27
7-Apr	288	27
8-Apr	289	27
9-Apr	290	27
10-Apr	291	27
11-Apr	292	27
12-Apr	293	27
13-Apr	294	27
14-Apr	295	27
15-Apr	296	27
16-Apr	297	27
17-Apr	298	27
18-Apr	299	27
19-Apr	300	27
20-Apr	301	27
21-Apr	302	27
22-Apr	303	27
23-Apr	304	27
24-Apr	305	27
25-Apr	306	27
26-Apr	307	27
27-Apr	308	27
28-Apr	309	27
29-Apr	310	27
30-Apr	311	27
31-Apr	312	27
1-May	313	27
2-May	314	27
3-May	315	27
4-May	316	27
5-May	317	27
6-May	318	27
7-May	319	27
8-May	320	27
9-May	321	27
10-May	322	27
11-May	323	27
12-May	324	27
13-May	325	27
14-May	326	27
15-May	327	27
16-May	328	27
17-May	329	27
18-May	330	27
19-May	331	27
20-May	332	27
21-May	333	27
22-May	334	27
23-May	335	27
24-May	336	27
25-May	337	27
26-May	338	27
27-May	339	27
28-May	340	27
29-May	341	27
30-May	342	27
31-May	343	27
1-Jun	344	27
2-Jun	345	27
3-Jun	346	27
4-Jun	347	27
5-Jun	348	27
6-Jun	349	27
7-Jun	350	27
8-Jun	351	27
9-Jun	352	27
10-Jun	353	27
11-Jun	354	27
12-Jun	355	27
13-Jun	356	27
14-Jun	357	27
15-Jun	358	27
16-Jun	359	27
17-Jun	360	27
18-Jun	361	27
19-Jun	362	27
20-Jun	363	27
21-Jun	364	27
22-Jun	365	27
23-Jun	366	27
24-Jun	367	27
25-Jun	368	27
26-Jun	369	27
27-Jun	370	27
28-Jun	371	27
29-Jun	372	27
30-Jun	373	27
31-Jun	374	27
1-Jul	375	27
2-Jul	376	27
3-Jul	377	27
4-Jul	378	27
5-Jul	379	27
6-Jul	380	27
7-Jul	381	27
8-Jul	382	27
9-Jul	383	27
10-Jul	384	27
11-Jul	385	27
12-Jul	386	27
13-Jul	387	27
14-Jul	388	27
15-Jul	389	27
16-Jul	390	27
17-Jul	391	27
18-Jul	392	27
19-Jul	393	27
20-Jul	394	27
21-Jul	3	

Table 1a. Summary of daily survey effort during GU-05-03 during leg 1.

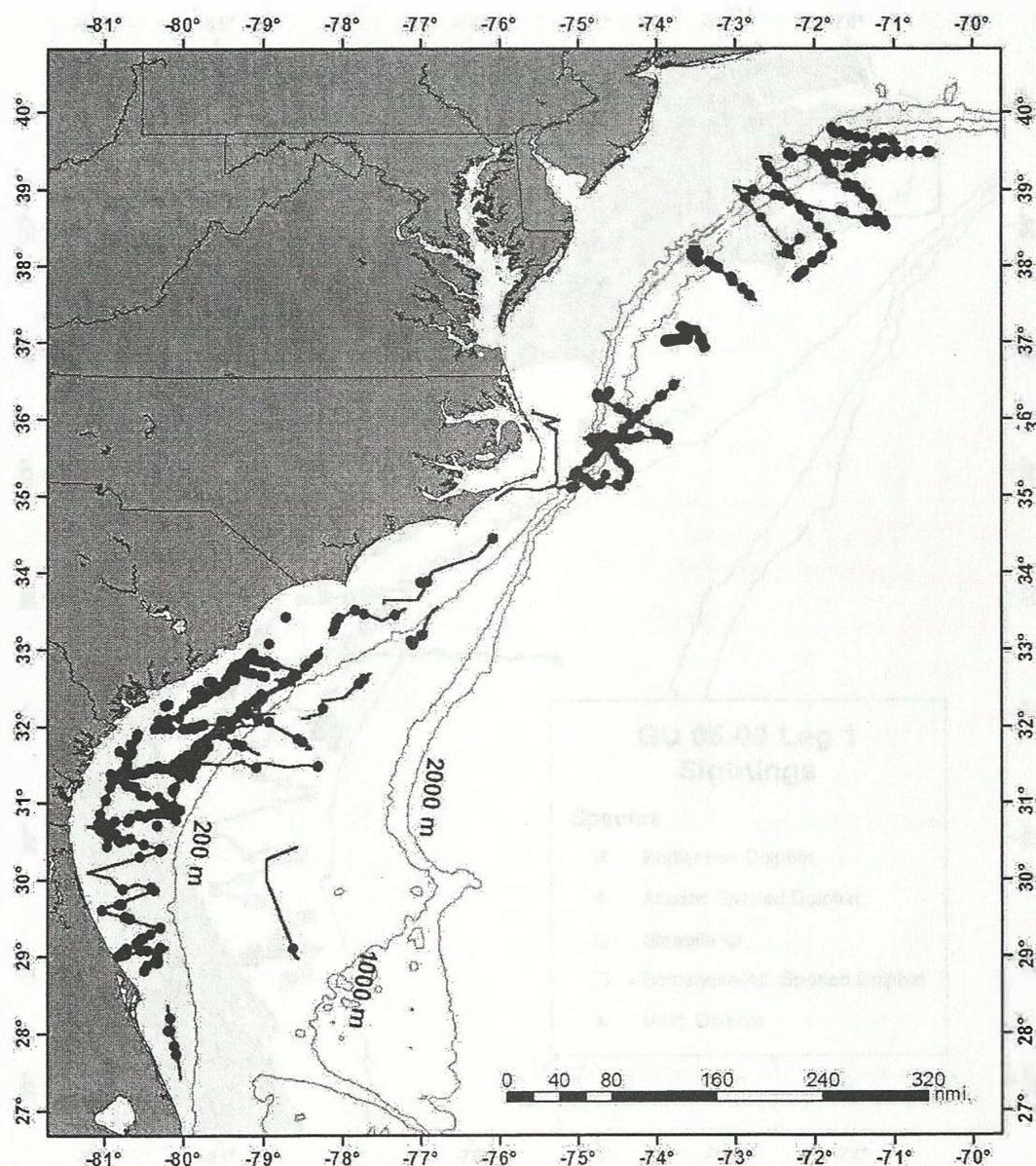
Date	Survey Event	Survey Effort (km)	Survey Hours	Number of Sightings	Avg. Sea State
14-Jun	Depart Pascagoula, MS	0	0		
15-Jun	Transit to Atlantic Ocean	0	0		
16-Jun	Transit to Atlantic Ocean	0	0		
17-Jun	Transit to Atlantic Ocean	0	0		
18-Jun	Survey Day	99	8.9	10	2.6
19-Jun	Survey Day	111	12.6	18	2.3
20-Jun	Survey Day	205	13.3	6	3.8
21-Jun	Survey Day	167	13.2	10	3.9
22-Jun	Survey Day	102	13.4	22	1.0
23-Jun	Survey Day	89	12.4	39	1.5
24-Jun	Survey Day	169	12.2	2	4.2
25-Jun	No Survey - Weather	0	0		
26-Jun	Survey Day	136	13.3	13	2.4
27-Jun	Survey Day	146	13.2	16	2.8
28-Jun	Survey Day	59	12.4	17	2.4
29-Jun	Survey Day	110	12.6	17	2.3
30-Jun	Survey Day	99	13.3	24	2.0
1-Jul	Survey Day	162	13	23	2.7
2-Jul	Survey Day	147	13.3	12	2.0
3-Jul	Survey Day	223	13.4	0	4.7
4-Jul	In Port – Norfolk, VA	0	0		
Leg 1 Totals		2,025	190.5	229	2.7

Table 1b. Summary of daily survey effort during GU-05-03 during leg 2.

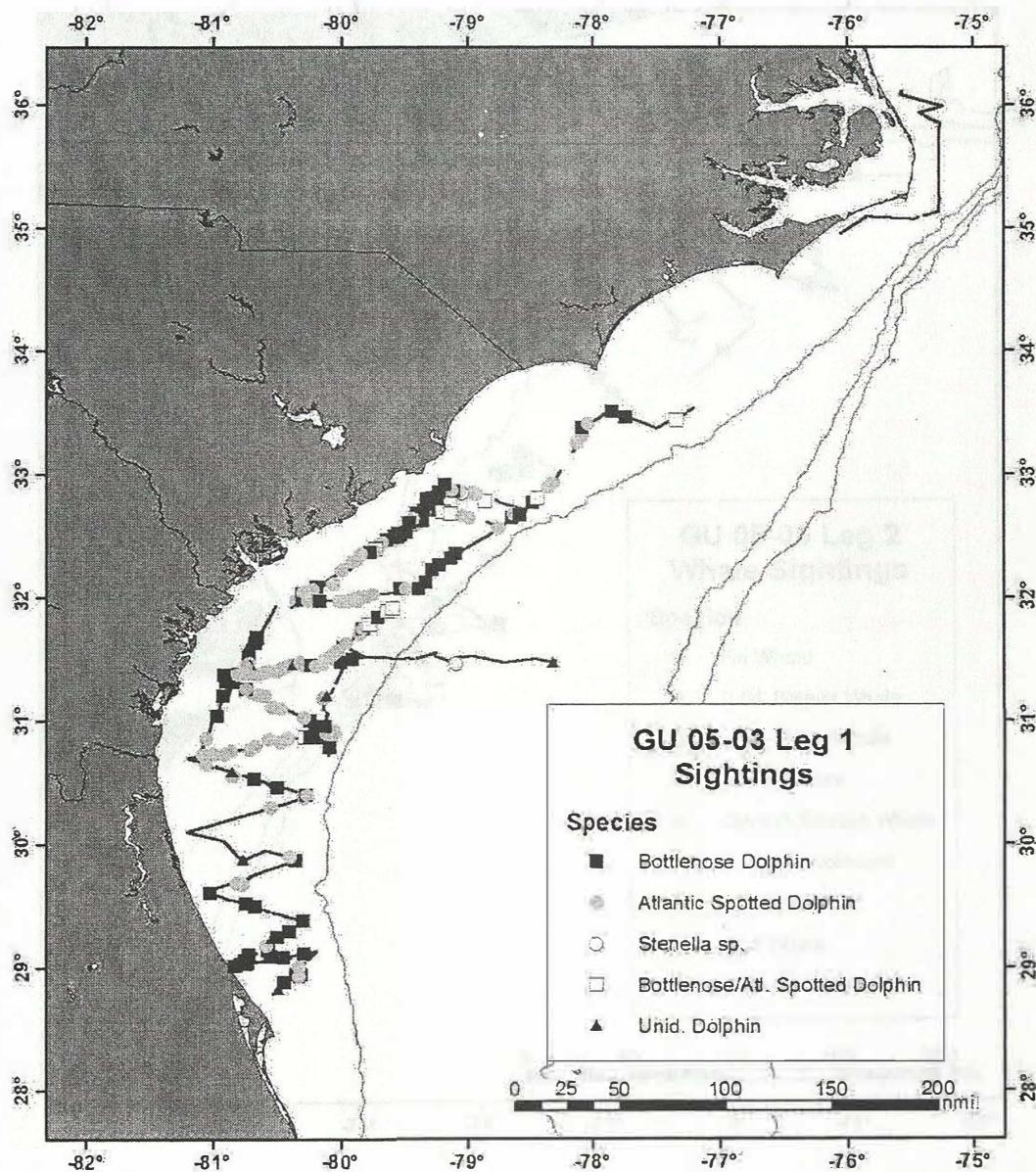
Date	Survey Event	Survey Effort (km)	Survey Hours	Number of Sightings	Avg. Sea State
7-Jul	In Port / Depart Norfolk, VA	0	0		
8-Jul	Transit to Survey Area / Weather	0	0		
9-Jul	Survey/Small Boat Ops.	16	11.7	12	1.0
10-Jul	Survey/Small Boat Ops.	58	12.2	22	1.0
11-Jul	Survey/Small Boat Ops.	82	11.9	32	1.9
12-Jul	Survey/Small Boat Ops.	84	11.8	11	2.3
13-Jul	Survey/Small Boat Ops.	17	12.3	33	1.5
14-Jul	Survey/Small Boat Ops.	70	12.2	26	2.8
15-Jul	Survey	131	13.1	21	1.7
16-Jul	Survey/Small Boat Ops.	52	4.6	12	1.6
17-Jul	Survey/Small Boat Ops.	90	13.0	19	1.8
18-Jul	Survey	61	12.6	9	3.2
19-Jul	Survey	122	13.0	4	4.0
20-Jul	Survey/Small Boat Ops.	127	12.9	22	2.5
21-Jul	Survey	211	13.2	21	2.5
22-Jul	Survey	175	11.0	22	4.6
23-Jul	Survey	64	10.4	4	3.0
24-Jul	Survey	86	9.1	3	4.8
25-Jul	In Port - Charleston, SC	0	0		
	Leg 2 Totals	1,446	185.0	273	2.5

Table 1c. Summary of daily survey effort during GU-05-03 during leg 3.

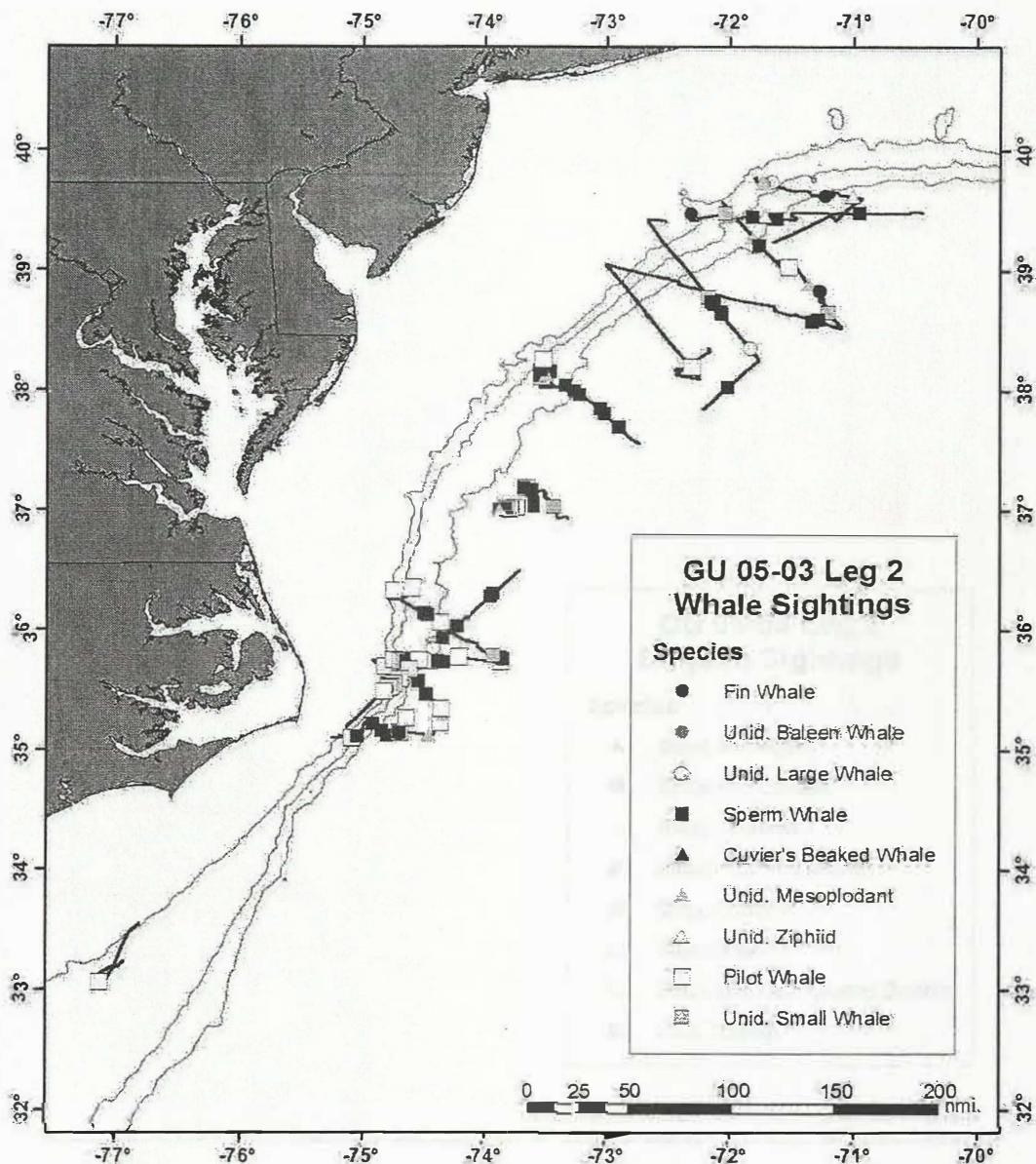
Date	Survey Event	Survey Effort (km)	Survey Hours	Number of Sightings	Avg. Sea State
27-Jul	In Port / Depart Charleston, SC	0	0		
28-Jul	Survey/Small Boat Ops.	68	7.8	0	2.0
29-Jul	Survey/Small Boat Ops.	132	10.0	5	2.6
30-Jul	Survey/Small Boat Ops.	117	10.7	5	2.0
31-Jul	Survey/Small Boat Ops.	244	4.4	10	2.0
1-Aug	Survey/Small Boat Ops.	153	9.5	10	3.0
2-Aug	Survey/Small Boat Ops.	155	9.6	5	3.2
3-Aug	Survey/Small Boat Ops.	225	10.5	11	3.1
4-Aug	Survey/Small Boat Ops.	154	9.7	7	3.4
5-Aug	Survey/Small Boat Ops.	175	11.1	7	2.5
6-Aug	Survey/Small Boat Ops.	311	3.3	0	3.1
7-Aug	Survey/Small Boat Ops.	178	10.0	2	4.2
8-Aug	No Survey - Weather	0	0	1	
9-Aug	Survey/Small Boat Ops.	207	11.2	5	2.2
10-Aug	Survey/Small Boat Ops.	197	11.2	1	3.2
11-Aug	Survey/Small Boat Ops.	126	8.4	5	1.7
12-Aug	Transit to Pascagoula	0	0		
13-Aug	Transit to Pascagoula	0	0		
14-Aug	Transit to Pascagoula	0	0		
15-Aug	Transit to Pascagoula	0	0		
16-Aug	Arrive Pascagoula, MS	0	0		
Leg 3 Totals		2,442	127.4	74	2.7


Table 2. Number of marine mammal group sightings for each leg during GU-05-03.

Common Name	Scientific Name	Leg 1	Leg 2	Leg 3	Total
Atlantic spotted dolphin	<i>Stenella frontalis</i>	112		31	143
Beaked Whale	<i>Mesoplodant / Ziphiid</i>		12		12
Bottlenose dolphin	<i>Tursiops truncatus</i>	88	29	27	144
Bottlenose/Spotted dolphin	<i>T. truncatus/S. frontalis</i>	10	1	1	12
Common dolphin	<i>Delphinus delphis</i>		16		16
Cuvier's beaked whale	<i>Ziphius cavirostris</i>		4		4
Fin whale	<i>Balaenoptera physalus</i>		4		4
Melon-headed/Pygmy killer whale	<i>Peponocephala / Feresa attenuata</i>		1		1
Pantropical spotted dolphin	<i>Stenella attenuata</i>			1	1
Pilot whales	<i>Globicephala sp.</i>		36		36
Risso's dolphin	<i>Grampus griseus</i>		35	3	38
Sperm whale	<i>Physeter macrocephalus</i>		59		59
Stenella sp.	<i>Stenella sp.</i>	2	1		3
Striped dolphin	<i>Stenella coeruleoalba</i>		23		23
Unid. Baleen Whale	<i>Balaenoptera sp.</i>		1		1
Unid. Dolphin		17	31	9	57
Unid. Large Whale			5		5
Unid. Odontocete			7	1	8
Unid. Small Whale			5	1	6
Unid. Ziphiid			3		3
Survey Total		229	273	74	576


Table 3. Tissue biopsy samples collected during each leg of cruise GU-05-03.

Species	Leg 1	Leg 2	Leg 3	Total
Atlantic Spotted Dolphin	11	2	2	15
Bottlenose Dolphin	58	4	7	69
Fin Whale		5		5
Pantropical Spotted Dolphin			8	8
Pilot Whale		62		62
Sperm Whale		1		1
Survey Total	69	74	17	160


Figure 1. Survey effort along the U.S. Atlantic coast during *Gordon Gunter* cruise GU-05-03 during June-August, 2005. Locations of marine mammal sightings (all species) are indicated by black circles. The 200, 1000, and 2000 meter bathymetry contours are indicated.

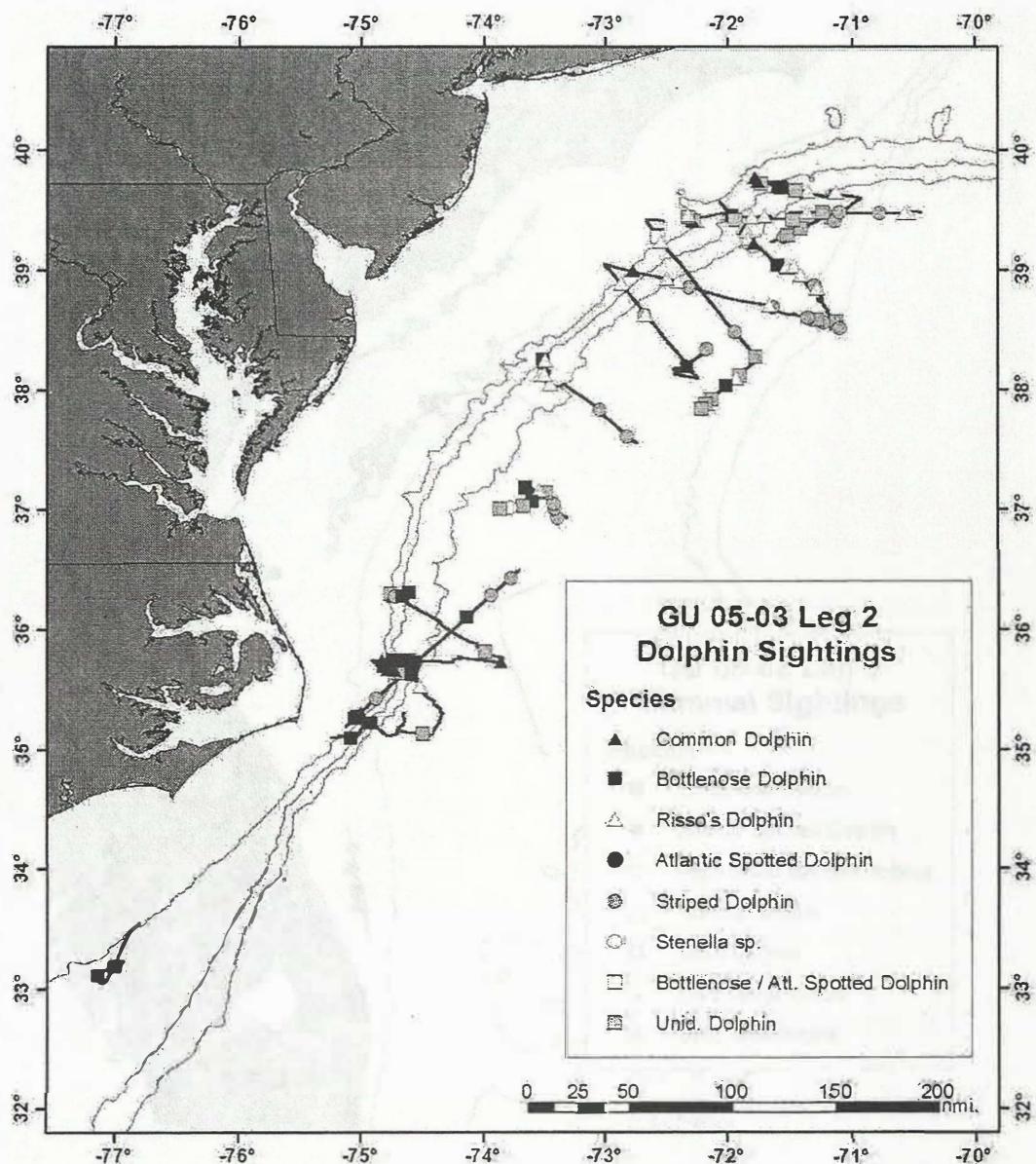

Figure 2. Survey effort and marine mammal sightings (symbols) during leg 1 of cruise GU-05-03. Operations in Atlantic water occurred during 18 June – 2 July, 2005 on the continental shelf between Florida and South Carolina.

Figure 3. Survey effort and whale sightings (symbols) during leg 2 of cruise GU-05-03. Operations in Atlantic water occurred during 5 July – 24 July, 2005 along the shelf break between Virginia and New Jersey.

Figure 4. Survey effort and dolphin sightings (symbols) during leg 2 of cruise GU-05-03. Operations in Atlantic water occurred during 5 July – 24 July, 2005 along the shelf break between Virginia and New Jersey.

Figure 5. Survey effort and mammal sightings (symbols) during leg 3 of cruise GU-05-03. Operations in Atlantic water occurred during 28 July – 11 August, 2005 on the continental shelf between Georgia and South Carolina.

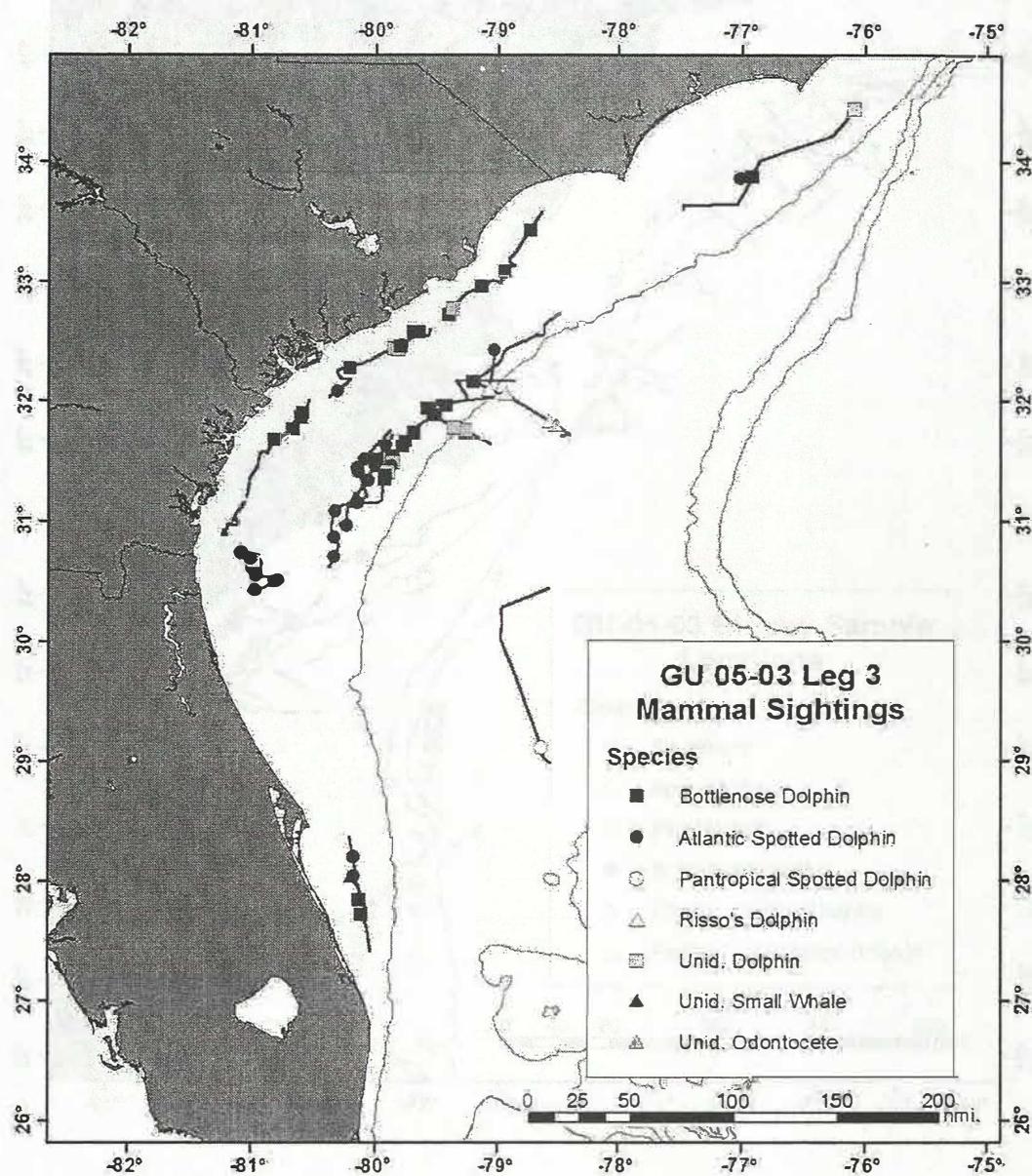
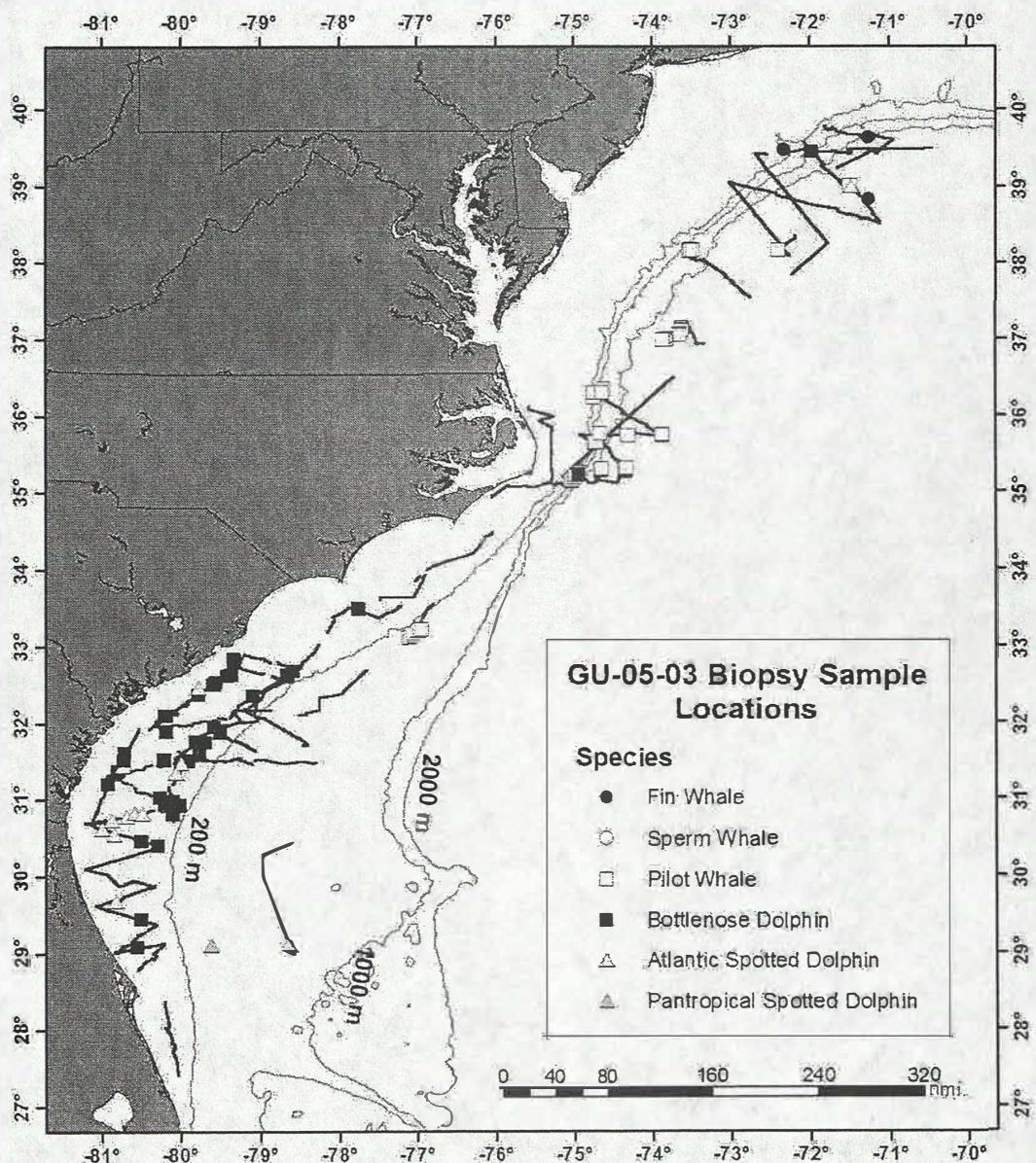



Figure 6. Biopsy samples collected during *Gordon Gunter* cruise GU-05-03.

